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Modeling the Invasion of Holly (Ilex aquifolium): Spatial
Relationships and Spread Trajectories

Santiago L�opez and David L. Stokes
University of Washington Bothell

In this study, we investigated the environmental factors associated with the establishment of invasive English holly (Ilex
aquifolium) and the spatiotemporal trajectories of its potential spread. We collected georeferenced presence and absence and
demographic data of holly between 2011 and 2014 in Saint Edward State Park, Washington. We analyzed them through a
spatially explicit framework that combines multiple logistic regression, cellular automata, and bivariate quadratic modeling.
Results showed that the presence of holly is influenced by the proximity to evergreen coniferous vegetation and forest edge,
distance to streams, forest structure, and slope direction. Our study confirmed that local environmental conditions, species
characteristics, and vegetative and dispersal mechanisms play a significant role in determining the rate and success of holly
establishment across the different phases of invasion. Invasive species management plans should consider both species
characteristics and their habitat and the interactions among them when planning long-term strategies for control and
eradication. Key Words: cellular automata, Ilex aquifolium, invasive species, multiple logistic regression, Pacific
Northwest.

我们于本研究中, 探讨与入侵的英国冬青树 (Ilex aquifolium) 定殖有关的环境因素, 及其潜在扩散的时空轨迹。我们蒐集华

盛顿州的圣爱德华州立公园自 2011 年至 2014 年间, 以地理坐标为参考的冬青树存在及缺席与统计数据。我们透过结合

多元逻辑迴归、细胞自动机与二元二次式模式化的明确空间架构, 分析上述数据。研究结果显示, 冬青树的存在, 是受到与

常青针叶林及森林边缘的邻近性、与溪流的距离、森林结构和坡向带的影响。我们的研究确认了地方环境与条件、物种特

徵和植栽及分布机制, 在决定冬青树在不同入侵阶段的定殖比率及成功中, 扮演了显着的角色。入侵物种管理方案, 在规划

控制与根除入侵物种的长程策略时, 应同时考量物种特徵及其栖地, 以及两者之间的互动。 关键词: 细胞自动机, 冬青树,

入侵物种,多元逻辑迴归,太平洋东北岸。

En este estudio investigamos los factores ambientales asociados con el establecimiento de la planta invasora acebo ingl�es (Ilex
aquifolium) y las trayectorias espaciotemporales de su dispersi�on potencial. Recogimos datos demogr�aficos de la presencia y
ausencia georreferenciadas del acebo entre 2011 y 2014 en el Parque Estatal Saint Edward, en Washington. Analizamos esos
datos por medio de un marco espacialmente explícito que combina modelaje de regresi�on logística m�ultiple, aut�omata celular y
cuadr�atica bivariable. Los resultados mostraron que la presencia del acebo es influida por la proximidad a vegetaci�on de coníferas
de hoja perenne y el borde del bosque, distancia a las corrientes de agua, estructura del bosque y direcci�on de la pendiente.
Nuestro estudio confirm�o que las condiciones ambientales locales, las características de la especie y los mecanismos vegetativos y
de dispersi�on juegan un papel significativo en determinar la tasa y �exito de la fijaci�on del acebo a trav�es de las diferentes fases de
la invasi�on. Los planes de manejo de las especies invasoras deben considerar tanto las características de la especie como sus
h�abitats, y las interacciones entre �estos, cuando se planeen estrategias de control y erradicaci�on a largo plazo. Palabras clave:
aut�omata celular, Ilex aquifolium, especies invasoras, regresi�on logística m�ultiple, Pacífico del Noroeste.

The invasion of nonnative species is a multidimen-
sional problem that threatens natural and human

systems in a wide variety of ways (Py�sek and Richard-
son 2010). Nonnative species have been associated
with the loss of native biodiversity (Wilcove et al.
1998); alteration of nutrient cycles and modification of
food webs (P�etillon et al. 2005); and losses in agricul-
ture, forestry, and other fronts of the economy
(Pimentel, Zuniga, and Morrison 2005). Effective
management of invasives requires improved under-
standing of the pattern and process of spread to pre-
vent negative impacts (Parker and Reichard 1998;
Lockwood, Hoopes, and Marchetti 2007). This study
presents methodological approaches for analyzing,

visualizing, and predicting the site-scale spatial spread
of an invasive tree species—English holly Ilex aquifo-
lium—in Washington State.
Research on the dispersion of nonnative species has

been motivated by the need to mitigate negative
impacts (Higgins, Richardson, and Cowling 1996) and
because invasions offer insights into the roles that the
environment and species characteristics play in shap-
ing land cover structure (Liao, Tao, and Jiang 2014).
For this purpose, researchers have developed mathe-
matical and statistical models that evaluate the spread
of alien organisms in new environments (e.g., Skellam
1951; Shigesada, Kawasaki, and Takeda 1995; Hig-
gins, Richardson, and Cowling 1996; Strickland,

The Professional Geographer, 0(0) 2016, pages 1–15 © 2016 by Association of American Geographers
Initial submission, February 2015; revised submission, July 2015; final acceptance, July 2015.

Published by Taylor & Francis Group, LLC.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 0
9:

05
 2

2 
D

ec
em

be
r 

20
15

 



Dangelmayr, and Shipman 2014). Less common are
spatially explicit models that consider both species–
habitat relationships and population dynamics in space
and time. Some examples include neutral landscape
models (Gardner et al. 1987; With 2002) and spatially
explicit logistic regression procedures (Ib�a~nez et al.
2009; Liao, Tao, and Jiang 2014). Spatially explicit
models are useful from a management standpoint
because they are often accompanied by geovisualiza-
tions that allow managers to explore the effects of dif-
ferent control strategies (Turner et al. 1995). In this
study, we follow this approach to characterize an early
invasion process and develop spatial scenarios that
might help inform field interventions.
Mapping and monitoring an invasion process is crit-

ical for weed control and management (Lu et al.
2013). Most efforts to map canopy-dominant invasive
species rely on remote sensing with imagery acquired
at different spatial and spectral resolutions (Wang
et al. 2013). Many alien plant species are often hidden
in the background of prominent natural land cover,
however, and are thus difficult to detect using
remotely sensed data (C. Huang and Asner 2009).
Recent advances in remote sensing have been able to
solve some of these challenges. These studies rely on
high spatial and spectral resolution digital imagery
(e.g., Quickbird, IKONOS, AISA) to characterize the
spatial distribution of alien species and model invasion
processes over time. Some examples include invasion
studies of leafy spurge (Euphorbia esula; Lawrence,
Wood, and Sheley 2006) and saltcedar (Tamarisk spp.;
Wang et al. 2013). Despite the valuable contributions
of these studies, they are often constrained by the lack
of information about age, location, and other attrib-
utes of individual plants that allow tracing site-level
trajectories that could be useful for managing inva-
sions locally. Furthermore, the analysis of the spatio-
temporal dynamics of plant invasions requires a basic
understanding of the invader’s demographic attributes
and types of environments that allow a successful
establishment (Higgins, Richardson, and Cowling
1996). These two requirements can be rarely met
through remote sensing alone; however, the combina-
tion of field surveys that link data from sampled indi-
viduals with spatial attributes derived from remotely
sensed data might provide an effective way to model
invasion trajectories locally.
In this study, we focus on English holly, which is a

relatively new invader of the Pacific Northwest
(PNW) natural areas (Olmsted 2006; Zika 2010).
Holly is a dioecious medium-size tree native to Eurasia
and northern Africa (Peterken and Lloyd 1967) intro-
duced to the PNW in the 1860s mainly for ornamental
purposes (Olmsted 2006). Holly is typically an under-
story species but has the potential to form monospe-
cific woodlands (Arrieta and Su�arez 2005). Holly has
been catalogued as a “weed of concern” in King
County, Washington (King County 2014). Clear evi-
dence exists that it represents a long-term manage-
ment problem (Zika 2010) and that holly populations

are rapidly increasing in less disturbed forests (Stokes
et al. 2014). Little information exists, though, about
the environmental conditions that influence holly
establishment and even less about the processes and
patterns of spread. By examining the spread of holly,
we could improve our understanding of its trajectory
and how landscapes either facilitate or prevent inva-
sion (With 2002).
This study tries to fill these information gaps and

addresses two general questions: (1) what are the envi-
ronmental factors associated with the presence of holly
at the site scale? Holly presence is defined as a tempo-
rary condition of a site when it is occupied by holly or
covered by its canopy. We hypothesize that the pres-
ence of holly is influenced by measurable environmen-
tal conditions such as interactions within a plant
community, edge effects, vegetation canopy height,
and topography. (2) What are the past and possible
future spatiotemporal trajectories of holly spread?
The identification of environmental filters together
with information about age characteristics of individ-
ual trees and dispersal mechanisms might provide
insights into the patterns and processes of holly
dispersion.

Study Area and Methods

Our study site is located in Saint Edward State Park
(47.73� N and 122.25� W) near the city of Seattle (Fig-
ure 1). The park includes 125 contiguous hectares of
maturing successional forest characterized by mainly
native vegetation and dominated by tree species of large
size (Green, Ramsey, and Ramsey 2013; Stokes et al.
2014). Forests in the park are typical of Washington’s
west-side low elevation forest (western hemlock zone,
sensu; Franklin and Dyrness 1988) in both composition
and successional stages (Smith 2006).
Our surveyed area consists of approximately 9.1

contiguous hectares and is primarily mixed evergreen
and deciduous forest, characterized as an Alnus rubra/
Polystichum munitum community (Chappell 2006), a
common forest type in western Washington (Franklin
and Dyrness 1988). Invasion by nonnatives is one of
the chief threats to the ecological condition of the
park (Stokes et al. 2014), and English holly is the most
widespread invasive plant species present (Smith
2006); however, no systematic attempt has been made
to control holly in the park, and prior to our study, no
holly removal had occurred in the study area.
We employed a stepwise multivariate logistic

regression (MLR) procedure to estimate location-spe-
cific holly occupancy probabilities based on a series of
environmental predictors. We defined our model as

P D exp aCb1X1 C b2X2 C ...C bnXnð Þ

1C exp aCb1X1 C b2X2 C ...C bnXnð Þ (1)

where P is the probability of the presence of holly, a is
the intercept, and bn are the slope parameters
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estimated via maximum likelihood. The slope parame-
ters represent how variations of the predictor affect
the likelihood of finding holly at a particular location.
X1, X2, . . ., Xn are the independent variables.
We obtained data on the presence and absence of

holly using systematic field searches in the winter and
early spring of 2011 (6.1 ha), 2012 (2.3 ha), and 2013
(0.8 ha; Figure 2A). Subsequent searches indicated
that we found more than 99.5 percent of all holly
plants and 100 percent of holly � 0.5 m tall (mean age
of plants 0.5 m tall D 4.04 years, SD D 2.65; Stokes
et al. 2014). We included in our sample holly plants
with a basal diameter � 1 cm or > 1 m from the near-
est sample plant employing one of two methods: (1)
Global Positioning System (GPS) mapping with a
Trimble Juno SB with estimated errors of 2 to 5 m
after differential correction using two local continu-
ously operating reference stations (CORS) or (2) if a
plant was within a distance of 25 m of a previously
located plant, we determined its location based on dis-
tance and bearing measurements using a meter tape
and handheld compass (estimated error < 1 m).
We determined the age of all sampled plants, and

for holly sampled in 2012 and 2013, we also deter-
mined whether they originated from seed or vegetative
spread. To determine the age of holly trees, we col-
lected ground-level cross sections of their stems. After
drying and sanding the cross sections, we examined
them under a dissecting scope and counted annual
growth rings (Schweingruber, B€orner, and Schultz
2013). Our analysis excluded all trees younger than

ten years of age. Very young plants have unknown
mortality rates; however, once holly at our study site
reach an age of ten years they appear to have negligi-
ble mortality (Stokes et al. 2014). Thus, our record of
tree ages and locations allows a continuous record of
the population ten years old and older (n D 160) in the
study area since the start of the invasion.
We processed the data within a geographic informa-

tion system (GIS) framework (ArcGIS version 10;
ESRI 2011). We used a grid of 2 m cells (N D 23,052
cells) to plot tree locations. The cells that contained at
least one holly tree were coded as one and the others as
zero. To reduce the problem of spatial autocorrelation
and obtain more efficient coefficients through the
MLR procedure, we selected a random sample of cells
that were at least 10 m apart from each other. We used
a stratified procedure to obtain a representative num-
ber of observations associated with the extent of the
main plant communities and the presence or absence of
holly. From our total number of cells (N D 207),
approximately 34 percent (n D 70) were coded as one
(holly) and the remaining (nD 137) as zero (nonholly).
For each cell in the sample, we obtained information

about the different environmental covariates. Based on
a priori observations during field surveys, holly
seemed to occur more frequently in sites closer to
evergreen coniferous vegetation. We obtained vegeta-
tion information from the classification of a digital
infrared image collected by the National Agriculture
Imagery Program (NAIP; U.S. Geological Survey
2010). We classified this image using an iterative

Figure 1 Study area in Saint Edward State Park, Washington State. (Color figure available online.)
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self-organizing clustering (ISO-Cluster) unsupervised
procedure (Ball and Hall 1965) and calculated the dis-
tance from each cell in the sample to the closest pixel
of the evergreen vegetation class. We also observed
that holly seemed to cluster around forest edges. We
mapped the edge of forested areas by visual interpreta-
tion of a high-resolution orthoimage collected by the
City of Kenmore in 2012 and all the trails in the park
with the aid of the Trimble GPS unit. We calculated
the shortest distance to forest edges and trails using
standard raster functions in a GIS. We also observed
that most holly trees established in areas away from
water sources. We calculated the distance from each
holly location to the closest stream as a measurement
of interaction between holly and water channels.
Because holly spread patterns seemed to associate with
topographic conditions, we derived elevation, slope,
aspect, and curvature information from LiDAR Bare-
Earth data (Puget-Sound-Lowlands-LiDAR-Project
2000–2005). We also analyzed landscape contextual
influences through a characterization of forest height.
We applied a focal operation on the LiDAR top-sur-
face data set with a 5 £ 5 pixel window to obtain an
average value.
Before undertaking the multivariable analysis, we

ran a series of Pearson correlation tests to measure the

strength of the association between pairs of explana-
tory variables. We also calculated the variance infla-
tion factor (VIF) of all pairwise combinations to
determine whether extreme multicollinearity existed
among them. Then, we applied an MLR procedure to
evaluate the combinatory effect of the explanatory var-
iables on the presence of holly. We assessed the signif-
icance of the variables by examining the Wald statistic
and the robustness of the model by inspecting an error
matrix. Although informative, measures such as the
percentage of cases correctly classified have been criti-
cized for inflating the correct classification rate
(Hosmer and Lemeshow 2004). Therefore, in addi-
tion, we used a receiving operating characteristic
(ROC) curve to illustrate the performance of a binary
classification system as its discrimination level varies.
We also obtained an independent sample of observa-
tions (N D 111) in 2014 to empirically validate the spa-
tial probability model (Figure 2B). Vegetation in this
new area was similar to that of the original surveyed
area (Smith 2006), and we used the same field methods
to collect holly data and location information.
We used the coefficients obtained through the

MLR procedure to generate a raster (employing
Equation 1) that depicts the likelihood of holly pres-
ence. From this raster, we derived a series of binary

Figure 2 Areas surveyed for English holly in St. Edward Park. (A) Sample used to calibrate the multivariate logistic regres-

sion model (data collected between 2011 and 2013). (B) Sample used to test the predictive capability of the spatially

explicit probability model (data collected in 2014). (Color figure available online.)
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grids depicting suitable and nonsuitable areas for holly
occupation using different threshold values (Pt � 0.1–
Pt � 0.9). Although all rasters used for variable opera-
tionalization had a high spatial resolution (1 m � cell
size � 2 m), we increased the spatial resolution of the
probability model to ensure that the cell size was com-
patible with the invasion process being analyzed (Hig-
gins, Richardson, and Cowling 1996). Stokes et al.
(2014) showed that canopy grows at an average rate of
approximately 0.1 m year¡1 based on the modeled
relationship between age and canopy area. We used
this estimate to resample all suitability maps.

Vegetative Spread

We combined the MLR results with cellular automata
(CA) to simulate vegetative spread. CA is a spatially
explicit technique that is applied to model a dynamic
spatial process. A CA system consists of a regular grid
of cells, each in one of a finite number of states (e.g.,

occupied and unoccupied). Time advances in discrete
steps and cells interact locally, with the next state of a
cell being a function of the current state of itself and
its neighbors (Sui and Zeng 2001). The integration of
MLR and CA has been successfully applied to study
urbanization processes (Wu 2002), landscape dynam-
ics (Soares-Filho, Cerqueira, and Pennachin 2002),
land use allocation (Zhu et al. 2009; Verburg, Neu-
mann, and Nol 2011; L�opez 2014), and plant invasion
processes (Lu et al. 2013).
The CA mechanism accounts for the four possible

spatial transitions over time based on each cell’s spa-
tiotemporal neighborhood: (1) holly to holly, (2) holly
to nonholly, (3) nonholly to holly, and (4) nonholly to
nonholly. Although the model formally includes these
transitions, as holly in the age range of our sample
(>10 years and <50 years) have a negligible mortality
rate (Stokes et al. 2014), the second transition is non-
existent, and because holly at this site is well below the
typical maximum age for the species (Peterken and

Figure 3 The conceptual modeling framework used in this study: (A) multivariate logistic regression, (B) two-dimensional

cellular automata, and (C) bivariate quadratic modeling.
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Lloyd 1967), it is expected to remain very low for
many decades. The CA model follows the formulation
of H. M. Huang et al. 2008:

StC 1 D f St; Nð Þ; (2)

where S is the cell state, t denotes a time interval, f is
the transitional rule, and N is the cell’s neighbors. We

defined the transition rules based on observed expan-
sion trajectories and expressed them as the likelihood
of a cell state transforming from one state to the other
or remaining in the same state. Time advances in steps
of one year, which is the temporal resolution of the
data collected in the field. Although holly appears to
cluster in certain areas more than others, this does not
imply that it is impossible to find holly in areas below
a probability threshold. Thus, setting just one cutoff

Table 1 Results of the bivariate analysis showing weak Pearson correlations and low variance inflation factors of
pairwise evaluations of explanatory variables

Distance
to

streams

Distance
to forest
edge

Distance to
evergreen conifer

vegetation

Distance
to

trails Elevation Slope Curvature Aspect
Canopy
height

Distance to
streams

Pearson
correlation

1 0.018 ¡0.292** ¡0.211** 0.511** ¡0.091 0.106 0.316** 0.321**

Sig. (two-tailed) — 0.801 0.000 0.002 0.000 0.194 0.129 0.000 0.000
VIF — 1.922 1.909 1.936 1.429 1.948 1.947 1.776 1.609

Distance to
forest edge

Pearson
correlation

0.018 1 0.024 ¡0.242** 0.102 0.120 ¡0.138* 0.074 0.081

Sig. (two-tailed) 0.801 — 0.733 0.000 0.144 0.086 0.048 0.287 0.245
VIF 1.125 — 1.133 1.092 1.116 1.121 1.122 1.130 1.120

Distance to
evergreen conifer
vegetation

Pearson
correlation

¡0.292** 0.024 1 0.104 ¡0.127 ¡0.014 0.063 ¡0.136 ¡0.230**

Sig. (two-tailed) 0.000 0.733 — 0.135 0.068 0.837 0.365 0.050 0.001
VIF 1.119 1.135 — 1.137 1.140 1.142 1.134 1.138 1.114

Distance to trails Pearson
correlation

¡0.211** ¡0.242** 0.104 1 ¡0.342** 0.026 0.083 ¡0.066 0.079

Sig. (two-tailed) 0.002 0.000 0.135 — 0.000 0.706 0.233 0.341 0.256
VIF 1.234 1.189 1.237 — 1.172 1.239 1.217 1.242 1.224

Elevation Pearson
correlation

0.511** 0.102 ¡0.127 ¡0.342** 1 ¡0.271** 0.225** 0.093 ¡0.120

Sig. (two-tailed) 0.000 0.144 0.068 0.000 — 0.000 0.001 0.181 0.085
VIF 1.359 1.812 1.850 1.749 — 1.752 1.769 1.828 1.708

Slope Pearson
correlation

¡0.091 0.120 ¡0.014 0.026 ¡0.271** 1 ¡0.090 ¡0.061 0.166*

Sig. (two-tailed) 0.194 0.086 0.837 0.706 0.000 — 0.195 0.383 0.017
VIF 1.131 1.111 1.131 1.129 1.070 — 1.132 1.127 1.119

Curvature Pearson
correlation

0.106 ¡0.138* 0.063 0.083 0.225** ¡0.090 1 0.004 ¡0.088

Sig. (two-tailed) 0.129 0.048 0.365 0.233 0.001 0.195 — 0.954 0.209
VIF 1.117 1.100 1.110 1.096 1.067 1.118 — 1.118 1.116

Aspect Pearson
correlation

0.316** 0.074 ¡0.136 ¡0.066 0.093 ¡0.061 0.004 1 0.084

Sig. (two-tailed) 0.000 0.287 0.050 0.341 0.181 0.383 0.954 — 0.227
VIF 1.039 1.129 1.136 1.140 1.125 1.135 1.140 — 1.136

Canopy height Pearson
correlation

0.321** 0.081 ¡0.230** 0.079 ¡0.120 0.166* ¡0.088 0.084 1

Sig. (two-tailed) 0.000 0.245 0.001 0.256 0.085 0.017 0.209 0.227 —
VIF 1.125 1.338 1.330 1.343 1.257 1.348 1.361 1.358 —

Note: N D 207. VIF D variance inflaction factor.
*Correlation is significant at the 0.05 level.
**Correlation is significant at the 0.01 level.

Table 2 Results of the multivariate logistic regression evaluation showing a significant relationship (p < 0.01) between
the presence of holly and a series of environmental factors

Variables B SE Wald df Sig. Exp(B)

Aspect (N/S) ¡0.927 0.419 4.884 1 0.027 0.396*

Distance to evergreen vegetation (DstEV) ¡0.511 0.144 12.592 1 0.000 0.600**

Canopy height (CanHE) 0.029 0.011 6.748 1 0.009 1.029**

Distance to edge (DstED) ¡0.016 0.006 8.778 1 0.003 0.984**

Distance to streams (DstST) 0.009 0.003 7.536 1 0.006 1.009**

Constant ¡1.756 0.959 3.352 1 0.067 0.173

Note: N D 207. Multivariate logistic regression model is significant at the 0.01 level.
*Correlation is significant at the 0.05 level.
**Correlation is significant at the 0.01 level.
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value to investigate the dispersion process can leave
aside feasible scenarios. Instead, we used different
probability thresholds by referring to the correspond-
ing spatial model. Based on the spatiotemporal charac-
teristics of holly trees in the study area, we defined the
general structure of the CA algorithm as follows:

StC 1 D
S0 ; when St D S0

S1; when St D S1

S1; when N1�1 and P�Pt and St D S0;

8<
:

where StC 1 is the cell’s future state; St is the cell’s cur-
rent state; S0 and S1 are the nonholly and holly states,
respectively; N1 is the number of holly cells around a
focal cell in a 3 £ 3 cell window; and Pt represents the
probability threshold.

Stochastic Seed Spread

CA is an effective tool to simulate dispersion when the
spread occurs in the immediate vicinity of a plant;
however, it is not adequate when the immediate spatial
neighborhood does not play an important role in

determining where the species will spread. Holly
disperses not only by vegetative spread but also by
the movement of drupes carried by birds far from
the drupe-producing trees (Zika 2010). In this case,
the incorporation of a statistical procedure to model
seed dispersal caused by stochastic processes can
account for factors that are not fully understood (Skel-
lam 1951; Levin et al. 2003). The number of trees at a
particular time step can be estimated from the past
spatiotemporal trajectory of seed-dispersed trees. Our
analysis of tree age based on ring counts and identifi-
cation of seed-dispersed trees allowed us to determine
this trajectory. We fitted a quadratic model to past
seed-dispersed tree establishments ten or more years
old to predict future numbers. The seed dispersion
model can be expressed as

Sd D g T ; Ftð Þ; (3)

where Sd is the number of seed-dispersed trees, g is the
quadratic model, T denotes the number of years, and
Ft is the frequency of seed-dispersed trees in year T.
We used a random point generator within the GIS to
place the predicted number of new tree locations (as
determined by a particular probability threshold) not
previously occupied by holly.

An Integrated Spatiotemporal Model

We combined the MLR/CA and stochastic spread
algorithms to emulate the spatial and temporal

Table 3 Evaluation of the multivariate logistic regression model’s predictive ability based on an error matrix with Pt � 0.5

Selected cases (N D 207) used in the calibration of the model Unselected Cases (N D 61) used for validation only

Absencea Presencea % Correct Absencea Presencea % Correct

Absenceb 144 15 90.6 43 6 87.8
Presenceb 28 20 41.7 10 2 16.7
Overall accuracy 79.2 73.77

Note: The cut value is 0.500. Results show both selected (observations used in the model’s calibration) and unselected cases (observations
not used for calibration).
aPredicted.
bObserved.

Table 4 Results of the receiver operating characteristic
curve evaluation showing the sensitivity of the model to
correctly predict holly locations at different probability
thresholds

Positive if greater than Sensitivity 1 ¡ Specificity

0.00 1.00 1.00
0.05 0
98 0.64
0.10 0.96 0.45
0.15 0.94 0.36
0.20 0.85 0.28
0.25 0.81 0.22
0.30 0.71 0.20
0.35 0.67 0.15
0.40 0.56 0.13
0.50 0.44 0.09
0.55 0.38 0.06
0.60 0.29 0.04
0.65 0.25 0.03
0.70 0.19 0.03
0.75 0.15 0.02
0.80 0.08 0.01
0.85 0.06 0.00
0.91 0.02 0.00
1.00 0.00 0.00

Table 5 Results of the empirical validation of the spa-
tially explicit probability model using an independent sam-
ple of holly observations

Probability
threshold

Predicted holly
locations

Predicted nonholly
locations

%
correct

P � 0.1 110 1 99
P � 0.2 108 3 97
P � 0.3 105 6 95
P � 0.4 99 12 89
P � 0.5 93 18 84
P � 0.6 81 30 73
P � 0.7 56 55 50
P � 0.8 43 68 39
P � 0.9 15 96 14

Note: N D 111.
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population dynamics of holly (Figure 3). We gener-
ated nine invasion scenarios (one for each probability
threshold) showing the presence and absence of holly.
Each scenario shows the evolution of the invasion pro-
cess in a T year period constrained by the probability
for successful establishment. When models are based
on the characteristics of the focal neighborhood, such
as CA, parametric statistical comparisons on a cell-by-
cell basis are not meaningful (Maeda et al. 2011).
Thus, we derived a diverse set of standard landscape
metrics with aid of the software FRAGSTATS
(McGarigal et al. 2002) to compare the simulated pat-
terns with the geographic landscape and to quantify
errors. Examples of studies that have used a similar
approach include Dale et al. (1994), Frohn et al.
(1996), Haines-Young and Chopping (1996), and
Carlson et al. (2012).
We obtained the following metrics: (1) total extent

of holly occupation (CA), (2) percentage of the land-
scape occupied by holly (PLAND), (3) patch density
(PD), (4) mean and median patch area (AREA_MN
and AREA_MD), (5) mean and median fractal dimen-
sion (FRAC_MN and FRAC_MD), (6) mean and
median nearest Euclidean distance between holly
patches (ENN_MN and ENN_MD), (7) aggregation
of holly patches (AI), and (8) clumpiness. We used the
Kruskal–Wallis one-way analysis of variance
(ANOVA) nonparametric test (Kruskal and Wallis
1952) to assess whether the predicted metrics were sig-
nificantly different from the observed ones. For this
purpose, we randomly placed fifty quadrats (100 m £
100 m) over the study area and obtained an average

estimate for each metric for both the modeled and
observed landscapes. We performed seventy-two pair-
wise comparisons between the modeled and observed
patterns of holly (i.e., eight metrics for each of the
nine scenarios). In addition, we derived a series of
error estimates from the ratios between each metric of
the simulated landscapes and the observed one. We
used these errors to evaluate the model’s ability to pre-
dict landscape structure.

Spatiotemporal Spread Trajectories

We let the model run for I iterations, until the suitable
area in each scenario was completely saturated by
holly. Because the spatial outcomes generated by the
spatially explicit model followed an S-curve trajectory,
we fitted a four-parameter logistic curve (Richards
1959) to determine the inflection points where expo-
nential growth and saturation occur (Gottschalk and
Dunn 2005). We defined the logistic model as

Lp D h T ; A;B; C;Dð Þ; (4)

where Lp is the estimated percentage of the landscape
occupied by holly; h is the four-parameter logistic
model; T denotes the number of years; A is the mini-
mum asymptote or the time estimate when spread
begins; B is the slope factor that refers to the steepness
of the curve and can be thought of as the expansion
rate when growth becomes exponential; C is the inflec-
tion point where the curvature changes direction or

Figure 4 Positive quadratic relationship between year of establishment and number of trees (age � 10 years) estab-

lished from seed in the area surveyed between 2011 and 2013.
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sign and can be thought of as the point in time where
saturation starts; and D is the maximum asymptote or
time estimate when saturation approximates the envi-
ronment’s carrying capacity at a particular threshold.

Results

Our first research question focused on the relationship
between the presence of holly and a series of

environmental covariates. Results of the bivariate anal-
yses showed either weak or nonsignificant correlations
among environmental predictors and low levels of col-
linearity (Table 1). We applied an MLR procedure to
analyze the combinatory effect of these spatial factors
on the presence of holly. In general, the MLR model
had a medium explanatory power and was statistically
significant (Nagelkerke R2 D 0.41; p < 0.01). A signifi-
cant strong negative correlation existed between holly

Table 6 Results of the Kruskal–Wallis tests showing only significant differences between the observed and predicted
holly dispersion patterns using different probability thresholds: Only 11 percent of 72 differences between observed and
predicted means were statistically significant

Cutoff value Landscape metric Kruskal–Wallis statistic SE Standard test statistic Sig. Adj. Sig

P � 0.1 AREA_MN 142.298 25.537 5.572 0.000 0.000
P � 0.1 ENN_MD 85.263 23.324 3.656 0.000 0.012
P � 0.3 AREA_MN 113.468 25.537 4.443 0.000 0.000
P � 0.3 ENN_MD 77.819 23.434 3.321 0.001 0.040
P � 0.6 FRAC_MD –180.390 25.472 –7.082 0.000 0.000
P � 0.8 AREA_MD –109.429 28.469 –3.844 0.000 0.005
P � 0.8 FRAC_MD –188.583 27.760 3.713 0.000 0.009
P � 0.9 ENN_MN –112.292 28.575 –3.930 0.000 0.004

Figure 5 Observed and predicted patterns of holly dispersion using nine probability thresholds: Pt � 0.1, Pt � 0.2, Pt �
0.3, . . ., Pt � 0.9.
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occupancy and distance to evergreen vegetation
(DstEV) and edge (DstED; p < 0.005), whereas rela-
tively weaker (0.005 < p < 0.05) significant positive
relationships existed between holly occupation and
distance to streams (DstST), vegetation height
(CanHE), and south-facing slopes (N/S; Table 2).
The results of the error matrix evaluation showed an

overall accuracy of 79 percent (Pt � 0.5; Table 3). The
ROC curve analysis showed a lower accuracy with
Pt � 0.5 (Table 4). The evaluation of the MLR model
based on the independent sample of observations indi-
cated that the model performs well. At Pt � 0.5, the
model correctly predicted holly locations 84 percent
of the time (Table 5), showing a much higher predic-
tion accuracy than what the error matrix and ROC
curve evaluations indicated.
Our second research question investigated the past

and possible future spatiotemporal trajectories of holly
spread. To answer this question, we concurrently con-
sidered both the environmental conditions and dis-
persal mechanisms to identify potential trajectories of
holly spread. The seed spread model showed a rela-
tively strong correlation (R2 D 0.58) between number
of years after detection and number of seed-dispersed
trees ten years old or older (Figure 4). Results of the
Kruskal–Wallis evaluation showed that most pairwise
differences between the modeled and observed
patterns of holly occupancy (Figure 5) were not signif-
icantly different. Only a few pairs (11 percent of all
seventy-two comparisons) differed at a 0.05 signifi-
cance level, nearly all at the very low (Pt � 0.3) or high
(Pt � 0.8) thresholds (Table 6). The integrated spa-
tially explicit model accurately forecasted the extent of
holly cover (CA and PLAND) at probability

thresholds of 0.5 and 0.6 (5.0 and 0.4 percent errors,
respectively). Percentage error estimates varied
depending on the landscape metric, but most metrics
had small errors on average (< 5 percent; Table 7).
To objectively forecast time horizons for the differ-

ent phases of holly spread, we applied a series of logis-
tic curves to the outcomes of the spatially explicit
model because their trajectory followed an almost per-
fect S curve (Figure 6A). Results showed that as the
percentage of the landscape suitable for occupation
increased (lower probability threshold), the year at
which exponential growth and saturation occur (the
inflection points) also increased (Figure 6B and
Table 8, Parameters B and C). The relationship
between the percentage of the landscape that is suit-
able for occupation and the number of years that it
takes to occupy it follows relatively strong nonlinear
trajectories (R2 D 0.68 for exponential growth, R2 D
0.99 for saturation; Figure 7).

Discussion

First, this article addressed the relationship between
the presence of holly and a series of environmental
factors locally. The results of the MLR model corrob-
orated our a priori expectations and confirmed that
the likelihood of holly occurrence increases with prox-
imity to evergreens, forest edge, canopy height and
southern exposures, and decreases with proximity to
streams. Although some studies have shown a negative
relationship between complex forest structure (e.g.,
richer diversity, more mature) and invasibility at a
local level (Symstad 2000; Kennedy et al. 2002; Man-
dryk and Wein 2006), we found that it is more likely

Table 7 Landscape metrics and error estimates in relation to the observed spatial pattern of holly dispersion

Probability
threshold

CA
(m2)

PLAND
(%)

PD (number
of patches
per 100 ha)

AREA_MN
(m2)

AREA_MD
(m2)

ENN_MN
(m)

ENN_MD
(m)

FRAC_MN
(no units)a

FRAC_MD
(no units)a

AI
(no units)b

CLUMPY
(no units)c

P � 0.1 0.07 0.81 585.81 0.00 0.00 19.05 15.72 1.02 1.00 98.11 0.98
Error (%) 59.28 59.21 ¡32.50 133.33 200.00 91.44 154.08 2.35 ¡11.31 1.47 1.48
P � 0.2 0.07 0.73 574.97 0.00 0.00 16.27 12.56 1.34 1.00 98.06 0.98
Error (%) 43.92 43.82 ¡33.75 116.67 100.00 63.44 103.05 34.19 ¡11.31 1.42 1.43
P � 0.3 0.06 0.61 553.27 0.00 0.00 16.59 15.18 0.90 1.00 97.85 0.98
Error (%) 20.04 19.96 ¡36.25 83.33 100.00 66.66 145.39 ¡9.49 ¡11.31 1.20 1.21
P � 0.4 0.06 0.60 553.27 0.00 0.00 18.16 15.87 1.34 1.00 97.82 0.98
Error (%) 17.48 17.49 ¡36.25 83.33 50.00 82.42 156.54 34.34 ¡11.31 1.17 1.18
P � 0.5 0.05 0.53 574.97 0.00 0.00 12.95 8.37 1.05 1.00 97.49 0.97
Error (%) 5.12 5.01 ¡33.75 50.00 100.00 30.12 35.28 5.16 ¡11.11 0.83 0.84
P � 0.6 0.05 0.51 574.97 0.00 0.00 12.13 8.30 1.01 1.00 97.45 0.97
Error (%) ¡0.43 ¡0.43 ¡33.75 50.00 100.00 21.83 34.18 1.61 ¡11.31 0.78 0.79
P � 0.7 0.04 0.43 499.03 0.00 0.00 12.88 7.27 1.09 1.02 97.52 0.98
Error (%) ¡14.71 ¡14.74 ¡42.50 50.00 50.00 29.39 17.51 9.00 ¡9.53 0.85 0.87
P � 0.8 0.03 0.35 531.61 0.00 0.00 12.29 6.94 1.05 1.00 97.19 0.97
Error (%) ¡31.77 ¡31.87 ¡38.75 16.67 0.00 23.47 12.24 5.26 ¡11.17 0.52 0.53
P � 0.9 0.03 0.29 477.33 0.00 0.00 10.34 3.99 1.00 1.00 96.78 0.97
Error (%) ¡42.43 ¡42.46 ¡45.00 0.00 50.00 3.89 ¡35.47 0.37 ¡11.06 0.09 0.10
Observed
value

0.05 0.51 867.93 0.00 0.00 9.95 6.19 1.00 1.13 96.69 0.97

aFRAC values greater than 1 for a two-dimensional patch indicate an increase in shape complexity.
bAI values range from 0 (no clustering) to 100 (completely clustered).
cCLUMPY values range from 0 (no aggregation) to 1 (completely aggregated).
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to find holly in the proximity of native evergreen coni-
fer vegetation and where canopies are taller, suggest-
ing that holly may be able to invade undisturbed
PNW forests, possibly even old growth. Interestingly,
Huebner and Tobin (2006) found a similar pattern in
exotic plants invading forests in West Virginia, sug-
gesting that some invasives might be successful at
establishing where resources (e.g., soil nutrients, mois-
ture, or light conditions) are adequate. This finding

highlights the evident vulnerability of less stressed
areas to invasion, such as those found in protected
areas in the United States. The positive correlation
between holly occupancy and proximity to forest edge
shows that holly is more successful at establishing in
transitional environments. Several studies have shown
that forest edges are the starting point for invasions,
acting as facilitators of the percolation of alien species
into less disturbed environments, especially of weedy

Figure 6 Spatiotemporal trajectories of holly dispersion in the area surveyed between 2011 and 2013. (A) Results from

the integrated spatial model. (B) Results from the fitting of a four-parameter logistic model (Lp) to the outcomes of the

integrated spatial model.
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plants (Cadenasso and Pickett 2001; Honnay, Ver-
heyen, and Hermy 2002; Gonz�alez-Moreno et al.
2013). It also appears that holly is more successful at
establishing in areas far away from watercourses. This
finding suggests that holly is not water limited in
PNW forests or that streams are not necessarily a
main conduit of its spread, at least not as important as
other dispersal channels. A careful analysis of dispersal
agent behavior, for instance, could help improve our
understanding of key conduits of spread. Finally, topo-
graphic characteristics, more specifically south-facing
slopes, significantly correlate with the probability of
holly occupancy, although the association is weak
(Wald D 4.884; 0.01 < p < 0.05). This outcome coin-
cides with other studies that showed that terrain

conditions influence the distribution of invasive plant
species (Bradley and Mustard 2006; Blumenthal et al.
2012). The effect of slope direction could have been
enhanced, however, by the limited variation of aspects
in the sample area, and additional observations are
needed to make this finding conclusive.
Second, our study evaluated past and possible future

spatiotemporal trajectories of holly spread. For this
purpose, we used the MLR coefficients to generate a
probability surface that depicts a site’s transition
potential from one state to another. Because most
explanatory variables are static or are changing slowly
relative to the speed of holly invasion, it is reasonable
to assume that the factors that control holly establish-
ment today will also affect its future distribution over
the next several decades. Nevertheless, the spatial
probabilities surface is just one of the two inputs nec-
essary to project holly’s spatial trajectories into the
future. The other input is a detailed spatiotemporal
characterization of individual trees that can help us
understand past trends. With this information and a
combination of a series of techniques (i.e., MLR, CA,
and logistic analysis) we were able to model the spatial
and temporal population dynamics of holly and gener-
ate nine suitability scenarios. We compared these sce-
narios with the observed landscape to evaluate the
integrated model’s performance.
The results of the evaluation of the eight land-

scape parameters showed that the model did very
well in predicting landscape spatial structure in
terms of extent and overall patch arrangement.
Stokes et al. (2014) and Arrieta and Su�arez (2005),
for instance, demonstrated that holly trees and seeds
tend to cluster in forestlands and around forest
edges. Our results are consistent with these studies
as shown by the aggregation and clustering index
values (i.e., AI � 100; CLUMPY � 1; Table 6).
Further, current observed spatial patterns of holly
occupation could be explained by the interaction of
controlling environmental factors and the effect of
stochastic seed dispersal and vegetative spread
across the area (e.g., dispersers perching on particu-
lar trees and depositing seeds or environmental
variability making certain areas more favorable for
establishment).

Figure 7 Positive quadratic and exponential relationships

between suitable area for holly occupation and the

expected number of years after detection. (A) Before

exponential growth. (B) Before saturation. A Pt � 0.5 is

highlighted as reference only.

Table 8 Results of a four-parameter logistic model fit to the outcomes of the integrated spatial model

Cutoff point Percentage of landscape suitable for holly occupation Aa Ba Ca Da R2 RMSE

P � 0.1 60.82 1.96 8.82 94.83 115.05 0.9955 2.63
P � 0.2 44.36 2.72 10.19 90.70 102.63 0.9960 2.76
P � 0.3 33.48 2.37 8.65 90.21 108.81 0.9972 2.55
P � 0.4 24.84 2.68 8.68 87.66 107.23 0.9966 2.53
P � 0.5 18.58 2.41 7.63 84.31 117.21 0.9943 2.81
P � 0.6 13.07 2.02 6.25 81.19 125.10 0.9962 2.53
P � 0.7 8.46 3.14 6.80 76.48 106.30 0.9966 2.84
P � 0.8 4.78 4.02 7.13 71.05 103.80 0.9951 2.94
P � 0.9 1.47 3.96 4.88 54.53 103.85 0.9964 2.19

Note: Parameters B and C show the inflection points (number of years) at which exponential growth and saturation occur, respectively.
RMSE D root mean square error.
aLogistic curve parameter.
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Results of the logistic analyses showed a clear pat-
tern: As the percentage of landscape that is suitable for
occupation increases, the year at which exponential
growth and saturation occur also increases. This is
logical because it just takes longer for an invasion to
reach these phases as the suitable area increases. Nev-
ertheless, these outcomes could be used for extrapola-
tion purposes as these relationships apparently hold
true across scales, as shown by the validation proce-
dure with data collected outside the original surveyed
area (Figure 2). For instance, if we know that 20 per-
cent of the area is suitable for holly occupation and a
similar proportion exists at the park level, we could
expect that it will take about eight years for holly to
start spreading exponentially and approximately
eighty-five years for the invasion to reach saturation
after detection in the whole park (Table 8, Pt � 0.5).
Additional landscape structural characteristics (e.g.,
patch density or extent) could be inferred from these
relationships at coarser scales that could be helpful for
managers. For example, we could expect a mean holly
density of 7 patches ha¡1 (§ 2.1 patch ha¡1) covering
approximately 77 m2 ha¡1(§4 m2 ha¡1) on average
when holly reaches its maximum spread rate (Fig-
ure 8A). When the saturation phase begins, the values
could increase up to 94 patches ha¡1 (§28 patch ha¡1)
and 964 m2 ha¡1 (§49 m2 ha¡1), respectively
(Figure 8B). By building scenarios like this it is possible
to assist managers in designing environmental interven-
tions (e.g., spread control or eradication strategies)
across the different phases of the invasion process.

Conclusions

In this study, we combined components of population
dynamics and environmental suitability to help

understand an invasion process locally. We examined
several key components (i.e., environmental condi-
tions and dispersion mechanisms) because of their
strong influence in predicting spread patterns. This
study shows that local environmental conditions, spe-
cies characteristics, and specific dispersal mechanisms
play a significant role in predicting the rate and success
of holly establishment across the different phases of
invasion. Thus, invasive species management plans
should consider both species characteristics and their
habitat and the interactions among them when plan-
ning long-term strategies for control and eradication.
The capability to simulate an invasion process spa-

tially and forecast time horizons of critical invasion
phases is useful from a species management perspec-
tive. The estimation of time horizons is ultimately
important not only for theory development (e.g., car-
rying capacity or spatial pattern forecasting) but
because managers must plan in advance to optimally
allocate resources from limited budgets (Hyder,
Leung, and Miao 2008). Because managers typically
operate at fine spatial scales and short time horizons,
studies like this one offer new possibilities to spatially
analyze the consequences of not taking control meas-
ures in a timely manner. Improved decision-making
plans based on spatiotemporal explicit information is
beneficial for all stakeholders involved in invasive spe-
cies management. Users can easily relate to and
engage with this type of information as it identifies
where the problems are and when to expect them.&
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